
chicken-gtk2

version <unreleased>

Tony Garnock-Jones

chicken-gtk2: version <unreleased>
by Tony Garnock-Jones

Published Mon May 19 21:00:15 BST 2003
Copyright © 2002 by Tony Garnock-Jones

Describes installation and use of the chicken-gtk2 Chicken Scheme binding to GTK+ v2.0.

Table of Contents
1. User Guide...7

1.1. General Operation..7

2. Extension modules..9

2.1. Glib/GObject 2.0 binding...9
2.1.1. Initialization and glib miscellany..9
2.1.2. GType..9
2.1.3. GBoxed..12
2.1.4. GEnum and GFlags...13
2.1.5. GValue...14
2.1.6. GClosure..15
2.1.7. GObject..15
2.1.8. GSignal..16

2.2. GTK+ 2.0 binding..17
2.2.1. General..17
2.2.2. Timeouts, idle-handlers, and input-handlers...18
2.2.3. GDK..18
2.2.4. Miscellaneous and overridden procedures..19

2.3. G+, a higher-level GTK+ interface..21
2.3.1. Core macros and functions..21
2.3.2. Constructors and modifiers..21

2.4. GdkEvent binding..26
2.5. Libglade 2.0 binding..27

Index...29

5

6

Chapter 1. User Guide

1.1. General Operation

7

Chapter 1. User Guide

8

Chapter 2. Extension modules

2.1. Glib/GObject 2.0 binding

(require ’gobject)

The gobject extension module provides a wrapping for a subset of the features offered by GLib
version 2.0. Currently it exposes a partial API for manipulating GType, GBoxed, GEnum, GFlags,
GValue, GClosure, GObject and GSignal types and values.

2.1.1. Initialization and glib miscellany

procedure: (g-warning args ...)

Delegates to the C functiong_warning to produce a warning message using the GLib logging
facility.

2.1.2. GType
GType is the GLib Runtime type identification and management system. Most of the datatypes used
in GLib (and GDK/GTK+ etc) are registered with the GType system.

A certain amount of introspection over the GType system is possible. GType itself does not provide
information about methods on objects, but does allow enumeration of object properties, signals,
superclasses and subclasses, and also provides information on the allowable values of enumerations
(GEnum) and flags (GFlags).

The combination of the following procedures and variables ought to allow access to much of the
available metainformation:

(gtype-name t) ; query type name
gtype:fundamental-types ; list of root types
(gtype-parent t) ; retrieve supertype
(gtype-children t) ; retrieve subtypes
(gobject-type o) ; extract GType from GObject
(gobject-class-properties t) ; list properties of class
(gobject:methods-on-class t) ; list methods on a class
(gobject:methods-in-gf gfname) ; list methods in a generic function
(gsignal-list t) ; list signals in a class
(gsignal-list-complete t) ; list signals in a class and parents

9

Chapter 2. Extension modules

Since GType does not collect the information returned bygobject:methods-on-class or
gobject:methods-in-gf itself, explicit calls togobject:register-method! are required to
fill in the associated datastructures.

Much of the introspection API is described in the sections devoted to each major grouping of GType
instances.

record: (make-gtype number)

Represents a GType instance - a representation of a type known to the GLib system. Thenumber is
the unsigned-long GType value as used in C.

procedure: (gtype-name t)

Given a gtype record, returns the name associated with the GType as a string.

procedure: (wrap-gtype num)

Wraps a GType number in a gtype record. Ifnum is zero (the invalid GType),#f is returned.

procedure: (gtype-from-name name)

Looks up a GType by name, wrapping it in a gtype record. Returns#f if the type name is not found.

procedure: (raw-gtype->fundamental num)

Given a GType number (not a record!), returns the GType number of its ultimate parent type - the
root of the inheritance tree for the passed-in GType.

procedure: (gtype->fundamental t)

As for raw-gtype->fundamental , but takes and returns a gtype record instead of a raw GType
number.

procedure: (wrap-gtype-fundamental num)

Produces a gtype record from a fundamental type number, using the C macro
G_TYPE_MAKE_FUNDAMENTAL.

procedure: (raw-unmake-gtype-fundamental num)

Converts a GType number to its raw fundamental-GType number by shifting right by
G_TYPE_FUNDAMENTAL_SHIFT.

procedure: (unwrap-gtype-fundamental t)

As for raw-unmake-gtype-fundamental , but takes a record instead of a GType number.

variable: gtype:...

Thegtype:...variables correspond to the fundamental types defined ingtype.h asG_TYPE_... .

G_TYPE_INVALID gtype:invalid
G_TYPE_NONE gtype:none
G_TYPE_INTERFACE gtype:interface
G_TYPE_CHAR gtype:char
G_TYPE_UCHAR gtype:uchar
G_TYPE_BOOLEAN gtype:boolean

10

Chapter 2. Extension modules

G_TYPE_INT gtype:int
G_TYPE_UINT gtype:uint
G_TYPE_LONG gtype:long
G_TYPE_ULONG gtype:ulong
G_TYPE_INT64 gtype:int64
G_TYPE_UINT64 gtype:uint64
G_TYPE_ENUM gtype:enum
G_TYPE_FLAGS gtype:flags
G_TYPE_FLOAT gtype:float
G_TYPE_DOUBLE gtype:double
G_TYPE_STRING gtype:string
G_TYPE_POINTER gtype:pointer
G_TYPE_BOXED gtype:boxed
G_TYPE_PARAM gtype:param
G_TYPE_OBJECT gtype:object

variable: gtype:fundamental-types

Collects all the fundamental (root) types together in a list.

procedure: (gtype-...? t)

Predicates for examining attributes of GType records.

gtype-fundamental? G_TYPE_IS_FUNDAMENTAL
gtype-derived? G_TYPE_IS_DERIVED
gtype-interface? G_TYPE_IS_INTERFACE
gtype-classed? G_TYPE_IS_CLASSED
gtype-instantiatable? G_TYPE_IS_INSTANTIATABLE
gtype-derivable? G_TYPE_IS_DERIVABLE
gtype-deep-derivable? G_TYPE_IS_DEEP_DERIVABLE
gtype-abstract? G_TYPE_IS_ABSTRACT
gtype-value-abstract? G_TYPE_IS_VALUE_ABSTRACT
gtype-has-value-table? G_TYPE_IS_HAS_VALUE_TABLE

procedure: (gtype-parent t)

Returns the parent type of the passed-in gtype record.

procedure: (gtype-depth t)

Returns the depth in the inheritance tree of the passed-in gtype record. A fundamental (root) type has
depth 1, its child types have depth 2, and so forth.

11

Chapter 2. Extension modules

procedure: (gtype-next-base leaf-t root-t)

Given aleaf-t and aroot-t which is contained in its ancestry, return the type thatroot-t is the
immediate parent of. In other words, this function determines the type that is derived directly from
root-t which is also a base class ofleaf-t . Given a root type and a leaf type, this function can be
used to determine the types and order in which the leaf type is descended from the root type1.

procedure: (gtype-isa? t is-a-t)

Returns#t if t is equal to, or a subtype of,is-a-t ; otherwise returns#f .

procedure: (gtype-children t)

Returns a list of child types of the passed-in gtype record.

procedure: (gtype-interfaces t)

Returns a list of the interfaces supported by the passed-in gtype record.

2.1.3. GBoxed
Boxed types are non-reference-counted, explicitly allocated, copied and freed structures. Each boxed
type has a pair of associated copy and free routines, which are called automatically when pointers to
GBoxed instances are put under the control ofwrap-gboxed .

record: (make-gboxed type pointer)

Represents a wrapped instance of a GBoxed type.type is the gtype record that is the type of the
boxed value;pointer is the C pointer pointing to the boxed value. Do not callmake-gboxed

directly - usually,wrap-gboxed is more appropriate (as it arranges for
reference-counting/finalization wheremake-gboxed does not).

procedure: (gboxed-copy-hook (#:optional new-value))

Gets (or sets, if the optional argument is supplied) the current value of the hook function called when
a GBoxed instance is to be copied. The default hook is the C functiong_boxed_copy . The hook
function should take an unsigned long (GType) and ac-pointer , and should return ac-pointer .

procedure: (gboxed-finalizer-hook (#:optional new-value))

Gets (or sets, if the optional argument is supplied) the current value of the hook function called when
a GBoxed instance is to be destroyed. The default hook does nothing. The hook function should
accept an unsigned long (GType) and ac-pointer .

procedure: (wrap-gboxed type ptr (#:optional copy?))

If ptr is non-#f and non-NULL, callsg_boxed_copy on it, wraps it in a gboxed record, and
arranges forg_boxed_free to be called on the copied pointer when the gboxed record is garbage
collected.type is required to decide which copying/freeing procedures to use.

The optionalcopy? parameter defaults to#t : it controls whether the pointer is to be copied before
being wrapped. If#f , the passed-in pointer is wrapped without being copied first. Use this only if
you know what you are doing, otherwise you can introduce “double-free” problems to your program.

12

Chapter 2. Extension modules

copy? does not control finalization: all records returned bywrap-gboxed are finalized with
g_boxed_free when they are garbage collected, whether they were copied originally or not.

procedure: (null-gboxed)

Returns the GBoxed equivalent of the null pointer.

2.1.4. GEnum and GFlags
The GType API provides information about enumeration and flags types registered with the system.
The associated wrappers provide convenience functions for introspection and translation between
enumeration/flag nicknames and numbers.

procedure: (genum-info t)

Retrieves a list of information about the values in the enumeration GType record passed in.

procedure: (make-genum-number->nick t)

Returns a procedure that when given a number returns the associated nickname from the
enumeration GType record passed in.

((make-genum-number->nick (gtype-from-name "GtkJustification"))
3)

==> fill

procedure: (make-genum-nick->number t)

Returns a procedure that when given a symbol returns the associated number from the enumeration
GType record passed in.

((make-genum-nick->number (gtype-from-name "GtkJustification"))
’fill)

==> 3

procedure: (gflags-info t)

Retrieves a list of information about the available values in the flags GType record passed in.

procedure: (make-gflags->number t)

Returns a procedure that when given a list of symbols returns the bitwise or of the associated
numbers from the flags GType record passed in.

((make-gflags->number (gtype-from-name "GdkWindowState"))
’(iconified sticky))

==> 10

13

Chapter 2. Extension modules

procedure: (make-number->gflags t)

Returns a procedure that when given a number returns the list of symbols making up that number,
from the flags GType record passed in.

((make-number->gflags (gtype-from-name "GdkWindowState"))
10)

==> (sticky iconified)

2.1.5. GValue
GValue is a subtype of GBoxed which is a polymorphic value cell - it can hold any of the
fundamental types and their subclasses. The wrapper provides conversion routines between Scheme
objects and GValue instances.

procedure: (raw-gvalue-type gvalue-pointer)

Given a C pointer to a GValue object, returns the GType number associated with the GValue.

procedure: (gvalue-type gv)

Given a properly boxed GValue, returns the gtype record associated with the GValue.

procedure: (gvalue->object gv)

Extracts a Scheme object from the passed-in boxed GValue. (Also accepts a raw pointer to a GValue
object, instead of a properly boxed GValue, for internal implementation use.)

procedure: (gvalue-empty! gv)

Empties a boxed GValue, without altering the type associated with it.

procedure: (make-gvalue (#:optional gtype-record))

Returns a newly-allocated, boxed GValue, with its type set to the passed in GType record. If
gtype-record is omitted, returns a completely blank GValue object, ready for filling in with any
type (by, for instance,gtk-tree-model-get-value).

procedure: (raw-gvalue-fill! gvalue-ptr scheme-object)

Fills a pointer to a GValue object with a value taken from the passed-in Scheme object. If the type of
scheme-object is not compatible with the type ofgvalue-ptr , returns#f ; if the fill operation
was otherwise successful, returns#t .

14

Chapter 2. Extension modules

procedure: (gvalue-fill! gv o)

Fills a properly boxed GValue object with the value of the passed-in scheme object, as for
raw-gvalue-fill! .

procedure: (object->gvalue t o)

Allocates a new boxed GValue of typet usingmake-gvalue , fills it usinggvalue-fill! , and
returns it. If the fill operation failed, anerror is signalled.

2.1.6. GClosure
Only basic support for GClosures is implemented, using a custom marshalling function
(cg_gclosure_marshaller). Scheme functions wrapped in GClosure instances are properly
collected - when the GClosure object is destroyed, a finalizer function (cg_gclosure_finalizer)
causes the handle on the scheme function to be released.

GClosures are not usually manipulated explicitly in Scheme code. Usually a function like
gsignal-connect (a.k.a.gtk-signal-connect) is used, which transparently manages GClosure
instances.

procedure: (make-gclosure fn)

Wrap a scheme function in a GClosure, and return a C pointer to the new GClosure structure. See
gsignal-connect .

2.1.7. GObject
GObject is the base type for all reference-counted objects in the GType hierarchy.

record: (make-gobject pointer)

Represents a GObject instance.pointer is the C pointer to the GObject instance. Do not call
make-gobject directly - usewrap-gobject instead.

procedure: (gobject-type o)

Returns the gtype record representing the type of the passed-in GObject.

procedure: (gobject-ref-hook (#:optional new-value))

Gets (or sets, if the optional argument is supplied) the current value of the hook function called when
a GObject instance is to be referenced. The default hook is the C functiong_object_ref . The hook
function should take ac-pointer and return ac-pointer .

procedure: (gobject-finalizer-hook (#:optional new-value))

Gets (or sets, if the optional argument is supplied) the current value of the hook function called when
a GObject instance is to be unreferenced. The default hook does nothing. The hook function should
accept ac-pointer .

15

Chapter 2. Extension modules

procedure: (wrap-gobject p)

Given a C pointer to a GObject instance, callsg_object_ref on it, constructs a gobject record for
it, and registersg_object_unref as the finalizer for the new record. Ifp is #f or the null pointer,
#f is returned; otherwise the newly-allocated gobject record is returned.

procedure: (null-gobject)

Returns the GObject equivalent of the null pointer. Useful with functions like
gtk-scrolled-window-new .

procedure: (gobject-class-properties t)

Returns a list of the properties supported by instances of the GObject GType record passed in.

procedure: (gobject-class-find-property t pname)

Returns a property specification for the named property on instances of the GObject GType record
passed in, or#f if no property by that name is found on that class.

procedure: (make-gobject-property-getter t pname-symbol-or-string)

Produces a getter function for the passed-in GType and property name.

procedure: (gobject-get-property o pname)

Retrieves the value of the named property on the GObject instance passed in.

procedure: (make-gobject-property-setter t pname-symbol-or-string)

Produces a setter function for the passed-in GType and property name.

procedure: (gobject-set-property! o pname newval)

Updates the value of the named property on the GObject instance passed in.

record: (make-gobject-method name gf class function)

Represents a method associated with a GObject class.name is the name of the method;gf is the
name of the generic function;class is the GType record for the class; andfunction is the
method function itself.

procedure: (gobject:methods-on-class g)

Retrieve a list of all methods supported by the GObject GType passed in.

procedure: (gobject:methods-in-gf gfname)

Retrieve a list of all methods in the named generic function.

procedure: (gobject:register-method! classname gfname methodname function)

Registers a method on a particular class with the system. This procedure is called by the generated
code for the GTK+ wrapper.

16

Chapter 2. Extension modules

2.1.8. GSignal
Only a partial interface to the GSignal system is supported. In particular, there is no support for
signal emission.

procedure: (gsignal-connect o sigdetail fn (#:optional after))

(also known asgtk-signal-connect within the gtk module) Connectsfn to the signal (string or
symbol)sigdetail on GObject instanceo. When the signal is emitted,fn will be called with an
argument list appropriate to the particular signal. Returns a number representing the connection
which can then be passed intogsignal-handler-disconnect .

procedure: (gsignal-disconnect o handlerid)

Given an object and a handler connection number as returned bygsignal-connect , disconnects
the handler so it will no longer fire when the signal is emitted.

procedure: (gsignal-lookup name t)

Look up a signal in a class by name; returns zero if the signal is not found for some reason.

procedure: (gsignal-query sigid)

Returns a list containing information about the signal identified by the signal identifier number
passed in.

procedure: (gsignal-list t)

Returns a list of information about the signals that can be emitted by objects of the passed-in GType
record, but not signals that can be emitted by its supertypes.

procedure: (gsignal-list-complete t)

Returns a list of information about the signals that can be emitted by objects of the passed-in GType
record, including the signals that can be emitted by its supertypes.

2.2. GTK+ 2.0 binding

(require ’gtk)

The gtk extension module provides a wrapping for the GTK+ GUI toolkit library, version 2.0. It
depends upon the gobject extension.

2.2.1. General

Most of the functions supported by the GTK+ binding extension are automatically generated from
*.defs files, taken from James Henstridge’s pygtk GTK+ binding for Python.

17

Chapter 2. Extension modules

The generated code is contained in internal modules which don’t need to berequire d separately -
they’re automatically included when the gtk module is loaded. Some of the generated code is not a
good fit for Chicken, so it has been overridden by hand-written code2 in the gtk module itself.

Generated procedures usually have a name derived from the name of the C function they are
wrapping: case is folded to lowercase, and underscores are replaced with hyphens, so for instance
gtk_main_quit becomesgtk-main-quit .

Methods on wrapped GtkObject subclasses are registered with the introspection facilities of the
gobject module with calls togobject:register-method! .

procedure: (gtk-signal-connect object signal-name handler-fn)

An alias forgsignal-connect .

procedure: (gtk-main)

Pass control to the GTK+ main loop. This call does not return until the application indicates it is
ready to terminate by callinggtk-main-quit .

procedure: (gtk-main-iteration)

Delegates directly to the C functiongtk_main_iteration .

2.2.2. Timeouts, idle-handlers, and input-handlers
Input handlers are not currently supported.

procedure: (gtk-timeout-add interval thunk)

Installs a timeout-handling procedure. Afterinterval milliseconds, and everyinterval

thereafter,thunk will be called with no arguments. Ifthunk returns#f , the timeout-handler will not
run again (it will be removed). The semantics are derived from the underlying C procedure,
gtk_timeout_add . This function returns a gtk:timeout-handle record, which can be passed in to
gtk-timeout-remove .

procedure: (gtk-timeout-remove handle)

Removes a previously-registered timeout handler, using a gtk:timeout-handle record returned by
gtk-timeout-add .

procedure: (gtk-idle-add thunk)

Installsthunk as a GTK+ idle handler, as per the C functiongtk_idle_add . Returns a
gtk:idle-handle record, which may be used withgtk-idle-remove .

procedure: (gtk-idle-remove handle)

Removes a previously installed GTK+ idle handler, using the gtk:idle-handle record returned from
gtk-idle-add .

18

Chapter 2. Extension modules

2.2.3. GDK

procedure: (gdk-color->list c)

Return a list (R G B) of the three colour components contained in a GdkColor structure.

procedure: (list->gdk-color l)

Convert a list (R G B) into a GdkColor boxed object.

procedure: (gdk-color-pixel c)

Extract the pixel value from a GdkColor structure.

procedure: (gdk-color-pixel-set! color newpixel)

Update the pixel value within a GdkColor structure.

procedure: (gdk-rectangle->list r)

Convert a GdkRectangle into a list (x y width height).

procedure: (list->gdk-rectangle l)

Convert a list (x y width height) into a GdkRectangle boxed object.

procedure: (gdk-window-get-pointer w)

Returns multiple values: (x y state), where x and y make up the current pointer coordinate, and state
is a list of GdkModifierType symbols.

2.2.4. Miscellaneous and overridden procedures

procedure: (gtk:gc-idle-timeout (#:optional value))

If value is omitted, returns the current setting for the number of milliseconds of GTK idleness
before a GC is forced; otherwise, sets the setting to the passed-in number of milliseconds. Only used
whengtk:gc-when-idle has been enabled. Defaults to 1000 milliseconds.

procedure: (gtk:gc-when-idle (#:optional value))

If value is omitted, returns#t if the GTK-idle-garbage-collector is enabled, or#f otherwise. If
value is specified, enables the idle-garbage-collector unlessvalue is #f . Defaults to being
switched off.

procedure: (gtk-calendar-get-date cal)

Retrieve the date selected by a GtkCalendar widget, in the form of a list of three numbers, year,
month, day:(2002 10 13) .

procedure: (gtk-stock-list-ids)

Returns a list of all current GTK+ “stock ID” strings.

19

Chapter 2. Extension modules

procedure: (gtk-tree-iter-new)

Allocates a new instance of GtkTreeIter, for use with various GTK+ tree model and view functions.

procedure: (gtk-list-store-new coltypes ...)

Creates and returns a new instance of GtkListStore with the same number of columns as parameters
to the function call. Each parameter should be a gtype record (as returned bygtype-from-name ,
for example, or as stored in variables such asgtype:stringor gtype:boolean).

procedure: (gtk-tree-store-new coltypes ...)

Creates and returns a new instance of GtkTreeStore with the same number of columns as parameters
to the function call. Each parameter should be a gtype record, as forgtk-list-store-new .

procedure: (gtk-list-store-set-column-types l coltypes ...)

Sets the number and type of columns associated with the GtkListStorel . coltypes are as for
gtk-list-store-new .

procedure: (gtk-tree-store-set-column-types t coltypes ...)

Sets the number and type of columns associated with the GtkTreeStoret . coltypes are as for
gtk-tree-store-new .

procedure: (gtk-tree-selection-get-selected sel iter)

Stores the currently-selected row of the GtkTreeSelectionsel (single-row-selection mode only) into
the GtkTreeIteriter . If there is no current selection,#f is returned; otherwise, the associated
GtkTreeModel is returned.

procedure: (gtk-widget-window w)

Extracts thewindow field of the GtkWidget struct associated with the passed-in object.

procedure: (gtk-widget-allocation w)

Extracts theallocation field of the GtkWidget struct associated with the passed-in object.

procedure: (gtk-widget-get-state w)

Extracts thestate field of the GtkWidget struct associated with the passed-in object, and returns it
in symbolic form.

procedure: (gtk-style-black-gc style)

Retrieves the black GC from the passed-in style.

procedure: (gtk-style-white-gc style)

Retrieves the white GC from the passed-in style.

procedure: (gtk-style-fg-gc style state)

Retrieves the foreground GC from the passed-in style that is appropriate to the passed-in
GtkStateType symbol.

20

Chapter 2. Extension modules

procedure: (gtk-editable-insert-text editable string position)

Inserts textstring at theposition passed in. Returns the new insertion position after the insert
operation.

2.3. G+, a higher-level GTK+ interface

(require ’g+)

G+ is based on the ideas in JLib, a library for building GUI widget trees which comes with Jscheme.

2.3.1. Core macros and functions

macro: (g+predicate-case (varname ...) ((predicate ...) body ...) ...)

Expands into acond expression which tests eachvarname against the correspondingpredicate ,
executing thebody of the first clause for which all thepredicate s return true. (A clause may also
have the keywordelse instead of a list of predicates, with effect similar tocond andcase .)

macro: (g+define-ctor name (base-ctor args ...))

Expands into a definition ofname, a function which acceptsargs ... and passes them to
base-ctor , keeping the result, passing the result tog+:configure with any extra arguments
supplied, and then returning the result of the call tobase-ctor .

For example:

(g+define-ctor X (A B C D))

expands into:

(define (X B C D . g+args)
(let ((x (A B C D)))

(g+:configure x g+args)
x))

2.3.2. Constructors and modifiers

21

Chapter 2. Extension modules

procedure: (g+:configure x items)

Given an objectx , and a list ofitems , takes different actions depending on the types ofx and each
item in turn. In general, ifx is some kind of container, and anitem is some kind of widget or object
appropriate for containment within that container, it will be placed inside it. If anitem is a string,
andx has some kind of intuitively-default text-string property on it, the property will be set. If an
item is a procedure, the procedure will be called withx as its single argument.

This function is the core of the G+ library, and is the main idea taken from JLib: the heavy use of
lambdas makes for a fairly clean way of building an extensible optional-argument and -property
system.

procedure: (g+property name value)

Returns a function that when applied to a GObject, sets a property on its argument. For use with
g+:configure (and by extension constructors defined withg+define-ctor).

procedure: (g+signal name handler)

Returns a function that when applied to a GObject, installs a signal-handler on it using
gsignal-connect .

procedure: (g+pack-start expand fill padding widgets ...)

Returns a function that when applied to a GtkBox, packs all thewidgets into it using
gtk-box-pack-start .

procedure: (g+pack-end expand fill padding widgets ...)

Returns a function that when applied to a GtkBox, packs all thewidgets into it using
gtk-box-pack-end .

procedure: (g+tip tooltips text)

Returns a function that when applied to a GtkWidget, sets the tooltip on that widget in thetooltips

set to betext .

procedure: (g+label-markup markup-mnemonic)

Returns a function that when applied to a GtkLabel, sets its markup and mnemonic keysequence
according tomarkup-mnemonic .

procedure: (g+label-markup* markup)

Returns a function that when applied to a GtkLabel, sets its markup according tomarkup .

procedure: (g+button mnemonic ...)

procedure: (g+button* ...)

procedure: (g+stock-button stock-id ...)

These three constructors useg+:configure to build variants on GtkButton.

procedure: (g+label mnemonic ...)

22

Chapter 2. Extension modules

procedure: (g+label text ...)

These constructors useg+:configure to build variants on GtkLabel.

procedure: (g+entry ...)

procedure: (g+entry/max-length max-length ...)

These constructors useg+:configure to build variants on GtkEntry.

procedure: (g+window type ...)

Builds a GtkWindow usinggtk-window-new andg+:configure .

procedure: (g+dialog ...)

Builds a GtkDialog usinggtk-dialog-new andg+:configure .

procedure: (g+vbox homogeneous spacing ...)

procedure: (g+hbox homogeneous spacing ...)

These constructors useg+:configure to build variants on GtkBox.

procedure: (g+vbutton-box ...)

procedure: (g+hbutton-box ...)

These constructors useg+:configure to build variants on GtkButtonBox.

procedure: (g+vpaned ...)

procedure: (g+hpaned ...)

These constructors useg+:configure to build variants on GtkPaned.

procedure: (g+menu ...)

procedure: (g+menu-bar ...)

procedure: (g+menu-item mnemonic ...)

procedure: (g+menu-item* ...)

These constructors useg+:configure to build variants on GtkMenu and GtkOptionMenu.

procedure: (g+option-menu ...)

Builds a GtkOptionMenu usinggtk-option-menu-new andg+:configure .

procedure: (g+tooltips ...)

Builds a GtkTooltips object usinggtk-tooltips-new andg+:configure .

procedure: (g+toolbar ...)

Builds a GtkToolbar object usinggtk-toolbar-new andg+:configure .

23

Chapter 2. Extension modules

procedure: (g+calendar ...)

Builds a GtkCalendar object usinggtk-calendar-new andg+:configure .

procedure: (g+check-button mnemonic ...)

procedure: (g+check-button* ...)

These constructors useg+:configure to build variants on GtkCheckButton.

procedure: (g+radio-button group-or-null-gobject mnemonic ...)

procedure: (g+radio-button* group-or-null-gobject ...)

These constructors useg+:configure to build variants on GtkRadioButton.

procedure: (g+adjustment current min max stepincr pageincr pagesize ...)

procedure: (g+hscrollbar adjustment ...)

procedure: (g+vscrollbar adjustment ...)

procedure: (g+hscale adjustment ...)

procedure: (g+vscale adjustment ...)

procedure: (g+spin-button adjustment climbrate numdigits ...)

procedure: (g+spin-button/range min max step ...)

These constructors useg+:configure to build variants on GtkAdjustment, GtkScrollbar, GtkScale
and GtkSpinButton.

procedure: (g+arrow arrow-type shadow-type ...)

Builds a GtkArrow object usinggtk-arrow-new andg+:configure .

procedure: (g+scrolled-window hscrollbar vscrollbar ...)

Builds a GtkScrolledWindow object usinggtk-scrolled-window-new andg+:configure .

procedure: (g+table rows columns homogeneous)

Builds a GtkTable usinggtk-table-new andg+:configure .

procedure: (g+table-cell left right top bottom widget)

Usesgtk-table-attach-defaults to place a widget within a GtkTable.

procedure:
(g+table-cell* left right top bottom xoptions yoptions xpadding ypadding widget)

Usesgtk-table-attach to place a widget within a GtkTable.

procedure: (g+notebook ...)

Builds a GtkNotebook object usinggtk-notebook-new andg+:configure .

24

Chapter 2. Extension modules

procedure: (g+notebook-page label-widget page-widget)

Returns a function that when applied to a GtkNotebook, appends a page to it using
gtk-notebook-append-page .

procedure: (g+notebook-page* label-widget menu-widget page-widget)

Returns a function that when applied to a GtkNotebook, appends a page to it using
gtk-notebook-append-page-menu .

procedure: (g+list-store typelist rows ...)

Builds a GtkListStore object usingg+:make-list-store andg+:configure .

procedure: (g+:make-list-store typelist rows)

Creates a new GtkListStore, and creates(length typelist) columns. Each element oftypelist

should be a GType record. Therows should contain zero or more lists of entries to put in the list
store. Each row must contain items that correspond to the GTypes passed intypelist .

procedure: (g+:list-store-append! ls typelist rows)

Appendsrows to ls , using the list of GType records intypelist to build the intermediate
GValues.

procedure: (g+tree-store typelist rows ...)

Builds a GtkTreeStore object usingg+:make-tree-store andg+:configure .

procedure: (g+:make-tree-store typelist rows)

Creates a new GtkTreeStore, and creates(length typelist) columns. Each element oftypelist

should be a GType record. Therows should contain zero or more lists of entries to put in at the root
of the tree. Each row must contain items that correspond to the GTypes passed intypelist ,
followed by child rows (that follow the same definition).

For example:

(g+:make-tree-store (list gtype:string gtype:int)
’(("A" 100

("AA" 110
("AAA" 111))

("AB" 120))
("B" 200

("BA" 210)
("BB" 220))))

procedure: (g+:tree-store-append! ts typelist parent-iter rows)

Appendsrows to ts , under the parent element atparent-iter (pass in(null-gboxed) to refer
to the root element), using the list of GType records intypelist to build the intermediate GValues.

procedure: (g+tree-view tree-model ...)

Wrapsgtk-tree-view-new-with-model with a g+:configure step.

25

Chapter 2. Extension modules

procedure:
(g+tree-view-column title renderer column-id updater editable-column g+args ...)

Creates and returns a configured instance of GtkTreeViewColumn.

title should be the text used as the column heading.renderer should be either one of the
symbols(text toggle pixbuf) , or an instance of GtkCellRenderer.column-id should be the
column from the GtkTreeModel to fetch data to render from. (To render the data in the first column
on the GtkTreeModel, pass in 0; the third column, pass 2; etc.)

updater may supply a function which will be called when the content of the cell renderer is edited
by the user. Set it to#f if you don’t want to install a handler for edited cells.editable-column

may supply a GtkTreeModel column number which contains GBoolean information specifying
whether the cell rendered by this column at a particular row should be user-editable or not. Supply
#f if you want the cell to be left in its default state with regard to editability.

Both updater andeditable-column are only relevant ifrenderer is a symbol - if it’s a
GtkCellRenderer instance, this function has no way of working out how to set updater or
edit-column properties, so it leaves it up to its caller.

2.4. GdkEvent binding

(require ’gdkevent)

This extension is automatically included when the gtk extension isrequire d. It provides accessors
for fields in GdkEvent boxed structures.

procedure: (gdk-event-type e)

Retrieves the (symbolic) GdkEventType from a GdkEvent.

procedure: (gdk-event-window e)

Retrieves the GdkWindow associated with a GdkEvent.

procedure: (gdk-event-string e)

Retrieves the string associated with a GdkEvent, or#f if there is no associated string. (Currently
supportskey-press andkey-release events.)

procedure: (gdk-event-area e)

Retrieves the area rectangle of an expose event, or#f if the passed-in event is of the wrong type.

procedure: (gdk-event-button e)

Retrieves the button number of a button event, or#f if the passed-in event is of the wrong type.

26

Chapter 2. Extension modules

procedure: (gdk-event-xy e)

Returns two values, the X and Y coordinates associated with a GdkEvent. Returns(values #f

#f) if there is no associated coordinate pair.

procedure: (gdk-event-xy-root e)

As for gdk-event-xy , except returns coordinates in the root window coordinate system rather than
the window-local coordinate system.

2.5. Libglade 2.0 binding

(require ’libglade)

The libglade extension module provides a wrapping for James Henstridge’s Libglade library, version
2.0. It depends upon the gobject and gtk extensions.

procedure: (glade-xml-new filename (#:domain domain) (#:root root))

Reads the Glade XML filefilename , constructing the widget tree. The optional keyword arguments
domain androot are passed through to the underlying C function,glade_xml_new ; if they are
omitted,NULL is passed in their place.

procedure:
(glade-xml-new-from-memory bv-or-string (#:domain domain) (#:root root))

As for glade-xml-new , except instead of reading XML from a file, reads XML from a byte-vector
or string (bv-or-string). Delegates to the C functionglade_xml_new_from_memory .

procedure: (glade-xml-construct xml filename (#:domain domain) (#:root root))

Fills in a newly-created GladeXML widget,xml , with information from the Glade XML file
filename , as forglade-xml-new . Delegates to the C functionglade_xml_construct .

procedure: (glade-xml-signal-autoconnect xml handlers-alist)

Connects handlers named in the GladeXML widgetxml to the Scheme functions passed in in
handlers-alist . handlers-alist should be an association list, suitable for use withassoc ,
which maps strings (the names of the handlers as specified in the original XML) to Scheme functions
of appropriate arity. Delegates to the C functionglade_xml_signal_autoconnect_full .

procedure: (glade-xml-get-widget xml name)

Retrieve a named subwidget from a GladeXML widget by name. Delegates to the C function
glade_xml_get_widget .

procedure: (glade-xml-get-widget-by-long-name xml name)

Retrieve a named subwidget from a GladeXML widget by long name. Delegates to the C function
glade_xml_get_widget_by_long_name .

27

Chapter 2. Extension modules

Notes
1. Documentation nicked outright from the GLib GType documentation.

2. Isn’t it nice having procedures in mutable global variables?

28

Index
Functions

g+:configure,21
g+:list-store-append!,25
g+:make-list-store,25
g+:make-tree-store,25
g+:tree-store-append!,25
g+adjustment,24
g+arrow,24
g+button,22
g+button*,22
g+calendar,23
g+check-button,24
g+check-button*,24
g+dialog,23
g+entry,23
g+entry/max-length,23
g+hbox,23
g+hbutton-box,23
g+hpaned,23
g+hscale,24
g+hscrollbar,24
g+label,22
g+label-markup,22
g+label-markup*,22
g+list-store,25
g+menu,23
g+menu-bar,23
g+menu-item,23
g+menu-item*,23
g+notebook,24
g+notebook-page,24
g+notebook-page*,25
g+option-menu,23
g+pack-end,22
g+pack-start,22
g+property,22
g+radio-button,24
g+radio-button*,24
g+scrolled-window,24
g+signal,22
g+spin-button,24
g+spin-button/range,24

g+stock-button,22
g+table,24
g+table-cell,24
g+table-cell*,24
g+tip, 22
g+toolbar,23
g+tooltips,23
g+tree-store,25
g+tree-view,25
g+tree-view-column,25
g+vbox,23
g+vbutton-box,23
g+vpaned,23
g+vscale,24
g+vscrollbar,24
g+window,23
g-warning,9
gboxed-copy-hook,12
gboxed-finalizer-hook,12
gdk-color->list,19
gdk-color-pixel,19
gdk-color-pixel-set!,19
gdk-event-area,26
gdk-event-button,26
gdk-event-string,26
gdk-event-type,26
gdk-event-window,26
gdk-event-xy,26
gdk-event-xy-root,27
gdk-rectangle->list,19
gdk-window-get-pointer,19
genum-info,13
gflags-info,13
glade-xml-construct,27
glade-xml-get-widget,27
glade-xml-get-widget-by-long-name,
27
glade-xml-new,27
glade-xml-new-from-memory,27
glade-xml-signal-autoconnect,27
gobject-class-find-property,16
gobject-class-properties,16
gobject-finalizer-hook,15
gobject-get-property,16

29

gobject-ref-hook,15
gobject-set-property!,16
gobject-type,15
gobject:methods-in-gf,16
gobject:methods-on-class,16
gobject:register-method!,16
gsignal-connect,17
gsignal-disconnect,17
gsignal-list,17
gsignal-list-complete,17
gsignal-lookup,17
gsignal-query,17
gtk-calendar-get-date,19
gtk-editable-insert-text,20
gtk-idle-add,18
gtk-idle-remove,18
gtk-list-store-new,20
gtk-list-store-set-column-types,20
gtk-main,18
gtk-main-iteration,18
gtk-signal-connect,18
gtk-stock-list-ids,19
gtk-style-black-gc,20
gtk-style-fg-gc,20
gtk-style-white-gc,20
gtk-timeout-add,18
gtk-timeout-remove,18
gtk-tree-iter-new,19
gtk-tree-selection-get-selected,20
gtk-tree-store-new,20
gtk-tree-store-set-column-types,20
gtk-widget-allocation,20
gtk-widget-get-state,20
gtk-widget-window,20
gtk:gc-idle-timeout,19
gtk:gc-when-idle,19
gtype->fundamental,10
gtype-...?,11
gtype-children,12

gtype-depth,11
gtype-from-name,10
gtype-interfaces,12
gtype-isa?,12
gtype-name,10
gtype-next-base,11
gtype-parent,11
gvalue->object,14
gvalue-empty!,14
gvalue-fill!, 14
gvalue-type,14
list->gdk-color,19
list->gdk-rectangle,19
make-gclosure,15
make-genum-nick->number,13
make-genum-number->nick,13
make-gflags->number,13
make-gobject-property-getter,16
make-gobject-property-setter,16
make-gvalue,14
make-number->gflags,14
null-gboxed,13
null-gobject,16
object->gvalue,15
raw-gtype->fundamental,10
raw-gvalue-fill!,14
raw-gvalue-type,14
raw-unmake-gtype-fundamental,10
unwrap-gtype-fundamental,10
wrap-gboxed,12
wrap-gobject,15
wrap-gtype,10
wrap-gtype-fundamental,10

Macros

g+define-ctor,21
g+predicate-case,21

Variables

gtype:...,10
gtype:fundamental-types,11

	Table of Contents
	Chapter 1. User Guide
	1.1. General Operation

	Chapter 2. Extension modules
	2.1. Glib/GObject 2.0 binding
	2.1.1. Initialization and glib miscellany
	2.1.2. GType
	2.1.3. GBoxed
	2.1.4. GEnum and GFlags
	2.1.5. GValue
	2.1.6. GClosure
	2.1.7. GObject
	2.1.8. GSignal

	2.2. GTK+ 2.0 binding
	2.2.1. General
	2.2.2. Timeouts, idlehandlers, and inputhandlers
	2.2.3. GDK
	2.2.4. Miscellaneous and overridden procedures

	2.3. G+, a higherlevel GTK+ interface
	2.3.1. Core macros and functions
	2.3.2. Constructors and modifiers

	2.4. GdkEvent binding
	2.5. Libglade 2.0 binding

	Index

