
OOI-CI Prototype Exchange-Space API

Tony Garnock-Jones <tonyg@lshift.net>

28th December 2009

Abstract

Description of the prototype OOI-CI AMQP API for
managing and making use of exchange-spaces and
exchange-points alongside existing AMQP 0-9-1 re-
sources, and relation of this API to other ongoing work.

1 Introduction

A fully general AMQP model would not only cover
AMQP 1.0 and 0-9-1, but would also be an instance of
a NIPCA-style DIF architecture, and would permit uni-
form naming and use of exchanges, resources, gateways
and so forth. While we’re working on such a generalisa-
tion of the AMQP model, an interim API will be useful
not only for a first generation of prototype applications
but also for clarifying our thinking around enrolment,
DIF architecture, and generalised AMQP.
This document discusses the programming and wire-

protocol interfaces to the new exchange-space and
exchange-point functionality, but does not discuss de-
tails of potential implementations of the new interfaces.
It also touches on the relationship of this prototyping
work to the generalisation of AMQP and to the ongoing
NIPCA development work.

2 Behavioural Definitions

The new entities have particular behaviours that need
to be defined independent of the protocols used to ma-
nipulate them.

2.1 Exchange Space

Exchange spaces are “virtual” or “cloud” analogues of
AMQP 0-9-1’s virtual-hosts. Some aspects of “real”
AMQP virtual-hosts are not available in exchange-
spaces.1 An exchange space logically

• contains exchange-points, and

• mediates access to the contained exchange-points.

1Notably, queues are not available within an exchange-space.

In effect, an exchange-space is an administrative scope
for the exchange-point resources it contains. The life-
cycle of the exchange-space bounds the lifecycle of the
contained exchange-points: when the space is deleted,
so are its contained points.

2.2 Exchange Point

Exchange points are “virtual” or “cloud” analogues of
AMQP 0-9-1’s exchanges.2 An exchange point

• can be of any AMQP 0-9-1 type

• can be published to

• can have queues bound to it

Exchange points, just like regular AMQP exchanges,
have lifetimes that are independent of the lifetimes of
the client connections that created them. In AMQP, an
exchange that is declared by a connected client persists
until either it is explicitly deleted, the containing bro-
ker is restarted (in the case of non-durable exchanges),
or the containing broker’s configuration database or the
containing broker itself is deleted (in the case of durable
exchanges). Exchange-points behave similarly: they
persist until explicitly deleted, or until the containing
exchange-space is reset or destroyed.

3 API overview

The existing AMQP 0-9-1 wire protocol is used un-
changed. Exchange-spaces and exchange-points within
them are encoded as new exchange types in the system.

3.1 Declaring exchange spaces

Exchange spaces are declared3 by invoking
Exchange.Declare with an exchange type

2In this prototype implementation, exchange-points are also mod-
elled as exchanges.

3“Declaration” in the AMQP sense of asserting the existence of,
creating if necessary.

1

of x-exchangespace.4 The name given to
Exchange.Declare will be used as the name of the
exchange space. The arguments table should contain
a string-valued entry named implementation, which
is used to select an implementation variant.5 For the
prototype, the string should have the value prototype.
Other entries in the arguments table are exchange-
space-implementation-specific parameters; for the
prototype implementation, no parameters are needed.

3.2 Securing exchange spaces

The prototype implementation will have the ability to
manage access to created exchange-spaces by using
RabbitMQ’s existing ACL-like facilities for restricting
access to exchanges (as specified in the Statement of
Work). While we do have some nascent ideas on con-
trolling authorisation in a distributed setting, develop-
ment of such ideas is out-of-scope for this phase of de-
velopment.

The broker holding the exchange declared as type
x-exchangespace should have users and permissions
configured appropriately for restricting access to the de-
clared exchange. Brokers wishing to join an exchange-
space must be able to log into the broker on which the
x-exchangespace exchange is declared, and must be
able to both read from and write to the exchange.

3.3 Joining and leaving exchange spaces

Joining (i.e., becoming a participating peer in) an ex-
change space is done implicitly as part of the declaration
of a particular exchange point. When an exchange-point
is declared, the exchange-spacemanagement function is
contacted by a behind-the-scenes process. No explicit
client action besides declaration of the exchange-point
is required.

Leaving an exchange space is done implicitly as part
of exchange-point deletion; this is a point of awkward-
ness in the current design because while there are ex-
plicit representations of exchange-spaces and exchange-
points, there are no representations of the behind-the-
scenes relay processes. Not having a direct handle on
relay processes means that all changes to their configu-
ration happen as side-effects of actions on other objects.6

4Non-standard exchange types are required by the AMQP 0-9-1
specification to have names starting with x-.

5This is an instance of the strategy pattern.
6Two possible approaches to avoiding these problems occur to me:

either reify the relay processes themselves, or move joining and leav-
ing to being actions that occur on bind and unbind. Neither approach
is entirely satisfactory. For the prototype phase of work, we can leave
the situation unresolved and concentrate on the main aspects of the
system.

3.4 Declaring exchange points

Exchange points are declared by invoking
Exchange.Declare with an exchange type
of x-exchangepoint. The name given to
Exchange.Declare will be used as a local alias for
the exchange point, and does not need to correspond
to the name of the exchange point itself. An exchange-
point then, from the declaring client’s (and the client’s
local broker’s!) point-of-view, has two names: the local
alias, for use only with the local broker, as well as its
“true name”, the combination of its exchange-space’s
name and the exchange-point’s unique name within the
space.
The arguments table given to Exchange.Declare

must contain the following entries:

• a table-valued entry named exchangespace, with
contents specific to the implementation variant
used but containing at least a string-valued entry
named implementation, which is used to select
an implementation variant. For the prototype, the
string should have the value prototype.

• a string-valued entry named exchangename

containing an AMQP exchange name such as
might be supplied in the name argument to
Exchange.Declare. This is the name of the
exchange-point itself, within the remote exchange-
space.

• a string-valued entry named exchangetype con-
taining an AMQP exchange type name such as
might be supplied in the exchange type argument
to Exchange.Declare.

The arguments table may also contain:

• a table-valued entry named arguments containing a
nested set of exchange declaration arguments such
as might be supplied in the arguments argument
to Exchange.Declare. If this entry is omitted, an
empty table is assumed.

Taken together, the exchangename, exchangetype and
arguments fields in the arguments table given to
Exchange.Declare for the exchange point are sufficient
to specify the kind of exchange point being declared.
If the exchange-point declaration fails, including

implementation-internal failures such as problems con-
tacting or negotiating with the exchange-space manage-
ment function, the usual AMQP error reporting proce-
dures are used to notify the declaring client of the prob-
lem. All of AMQP’s existing restrictions on exchange
declarations—that the exchange types must match, and
so on—apply to exchange points, as well; that is, if one
client declares an exchange-point with type “fanout”,

2

and another declares one with the same name but with
type “direct”, the second declaration will fail.

3.5 Deleting exchange points and exchange
spaces

To delete an exchange point or exchange space, invoke
Exchange.Delete as usual.
An awkwardness exists here when deleting an ex-

change point: in AMQP, exchanges can be deleted with-
out first declaring them, but here to delete an exchange
point the broker must first know which exchange space
to delete the point from, so the point must first have
been declared on the local broker.
dThis is a syntactic problem with the AMQP proto-

col as it stands. If this prototype design were to be
taken to production, the awkwardness would need to
be worked around by some out-of-band, non-AMQP re-
source management tool, perhaps agent- or GUI-based,
that could manipulate structures internal to the proto-
type implementation without being restricted to the ex-
isting AMQP operations.
A fully generalisedmodel of AMQPwill not have this

awkwardness: resource deletionwill include enough in-
formation to precisely locate the resource to delete with-
out having to construct it beforehand.

3.6 Binding to and unbinding from ex-
change points

A similar awkwardness exists here as described for
deleting exchange points: they must be declared on the
local broker before any kind of binding is attempted.
Given this, however, binding to exchange points can
be done as usual for AMQP: issue Queue.Bind and
Queue.Unbind, mentioning the local alias for the ex-
change point that was set up in the Exchange.Declare.

3.7 Publishing to exchange points

Messages sent to locally-declared x-exchangepoint ex-
changes using Basic.Publishwill be delivered to other
participants in the exchange-space that have subscribed
to the exchange-point, with implementation-specific
QoS and reliability guarantees. See section 4.6 for de-
tails on QoS levels provided by the prototype imple-
mentation.
The mandatory and immediate flags to

Basic.Publish are not supported in the prototype
implementation, and must be set false.7 A channel
error will be signalled if either is set true. Similarly,

7The reason for this is that it is not clear what they mean in a dis-
tributed setting.

Tx-class transactions are not supported in the prototype;
if a Basic.Publish is issued to an x-exchangepoint

exchange over a channel on which Tx.Select has been
called, a channel error will be signalled.

4 Prototype implementation

The prototype implementation will provide a sin-
gle exchange-space implementation variant, prototype.
Coordination between participants in an exchange-
space will be centralised (at the broker on which the
exchange-space exchange was declared), analogous to
the centralised tracker in early variants of Bittorrent,
but the actual exchange of data between exchange-
points will be decentralised, managed directly by the
exchange-point participants.
This API is flexible enough to accommodate alter-

native implementations of the exchange-space man-
agement function, requiring changes only to the spe-
cific arguments passed in the Exchange.Declare com-
mand used to create an exchange-space. For exam-
ple, if a decentralised exchange-space network man-
agement function were implemented, the parameters
to Exchange.Declare would include “seed” addresses
that would be used to bootstrap the network into exis-
tence. An agent-based implementation would provide
specifics of the agents that were involved in the network
management function.

4.1 Exchange-point declaration parameters

When declaring an exchange-point, the table-valued
exchangespace field of the arguments table of the
Exchange.Declare command must contain the follow-
ing fields in addition to the mandatory implementation
entry:

• host, a string: the hostname of the AMQP broker
on which the exchange-space is declared.

• space, a string: the name given to
Exchange.Declare when the exchange-space was
declared.

It may also contain:

• port, an integer: the port number of the AMQP
broker on which the exchange-space is declared. If
omitted, 5672 is used.

• username, a string: the user name to use when
connecting to the AMQP broker on which the
exchange-space is declared. If omitted, guest is
used.

3

• password, a string: the password to use when
connecting to the AMQP broker on which the
exchange-space is declared. Optional unless
username is provided; if omitted, guest is used.

• virtualhost, a string: the virtual host to use
when connecting to the AMQP broker on which the
exchange-space is declared. If omitted, / is used.

The synchronisation technique and protocol used to im-
plement exchange-points for the prototype has yet to
be determined, though it is likely to be similar to the
experiments embodied in http://github.com/tonyg/

pika/blob/master/examples/demo_relay.py. (It’s
also worth noting that the particular technique chosen
is not visible at the API.)

4.2 Potential implementation alternatives

This API definition makes use of the strategy pattern:
alternative implementations following the defined in-
terface can be selected by varying the implementation

arguments given to Exchange.Declare commands.

In order to get a feel for the space of possible im-
plementations, it’s useful to consider an analogy be-
tween this system and the Bittorrent synchronisation
system. In Bittorrent, each active torrent consists of ex-
actly one tracker, zero or more peers, and exactly one
finitely-bounded set of information to be synchronised
(the dataset being distributed). One could say that the
tracker is logically identified with the torrent.

In the exchange-point/exchange-space system, each
exchange space consists of exactly one network man-
agement function, zero or more peers, and zero or more
unbounded streams of information to be synchronised
(the exchange points themselves). One could say that
the networkmanagement function is logically identified
with the exchange-space.

Multiple implementation variants for Bittorrent are
possible: the tracker can be centralised or decen-
tralised; peers can employ different transports and pro-
tocols for performing the synchronisation task ahead of
them. Similarly, multiple implementation variants for
exchange-spaces are possible: the networkmanagement
function can be centralised or decentralised, and peers
can coordinate in many different ways to synchronise
their views of the information flowing through the ex-
change points contained within the exchange space. A
decentralised network management function would be
analogous to the Distributed Hash Table used to man-
age Bittorrent trackers in a decentralised way.

4.3 Network substrate independence

One of the purposes of this prototype is to integrate
with the DIF implementation being developed in par-
allel with it. As it stands, our implementation of this
API uses AMQP over TCP to communicate from peer
to peer and from peer to exchange-space network man-
ager. When the DIF implementation becomes avail-
able, all that will be required will be formalisation of
the means of specifying the addresses involved: again,
the strategy pattern instance inherent in the use of the
arguments table in Exchange.Declare commands gives
us a convenient location to place the required syntax.

4.4 Broker independence and AMQP 1.0

Both the design presented here and the concrete imple-
mentation being developed are, to some extent, broker-
independent. While we do take advantage of some spe-
cial features of RabbitMQ for ease and speed of devel-
opment, it would be possible to operate in an entirely
implementation-neutral fashion (at a cost in robust-
ness, complexity and efficiency) by changing the design,
reifying implementation structures such as exchange-
spaces, exchange-points, and exchange-point relays,
turning them into ordinary AMQP applications.
Mapping the design onto AMQP 1.0 has yet to be dis-

cussed: it is unclear whether it will involve the kind
of alteration discussed in the previous paragraph, or
whether a more natural embedding will be possible.

4.5 Relationship to generalised AMQP
work

The generalisation of AMQPmentioned in the introduc-
tion is still being developed, in parallel with this pro-
totyping work and the aforementioned work on a gen-
eralised network transport interface. This prototyping
work will help clarify some issues in the generalisation
work, particularly those surrounding enrolment and the
roles of queues and of relays.

4.6 Confirmation of receipt

The prototype implementation will deliver on a best-
effort basis. Failure of a network element8 on the path
between two peer brokers could lead to message loss.
Therefore, application-level acknowledgements, time-
outs, and retransmissions will be required in situations
where application semantics require confirmation of de-
livery.

8For example: netsplits, routing misconfiguration, and other con-
nectivity failures; firewall reboots; broker restarts; unexpected TCP
resets; and so on.

4

For example, let us imagine a system where an
exchange-point is used to relay job requests to some re-
mote service. The service instance receiving the requests
should send an acknowledgement of receipt to the orig-
inator of each request. If the jobs complete quickly
enough, the acknowledgment and the reply (if there is
one) can be bundled together in a single message; if
the jobs are long-running, a separate acknowledgement
message should be sent when a job is received from the
broker, with a reply message following later once the
job completes. Furthermore, on receipt of a duplicate
request, a duplicate acknowledgement9 should be sent
(without actually running the job again). If the origina-
tor of a request does not receive an acknowledgement in
a reasonable amount of time, it should retransmit the re-
quest. This way, robust confirmation of delivery can be
achieved, and a wide variety of responsibility-transfer
schemes can be straightforwardly implemented with-
out depending on the fine implementation detail of the
exchange-point system.

5 Example

In this example,

• an exchange-space, market, is created by
user Margaret on her AMQP server at
amqp.market.example;

• user Alice, who runs an AMQP server at
amqp.acme.example, runs a program that wishes
to subscribe to and publish to the exchange-points
bids and mailboxwithin market;

• user Bob, who runs an AMQP server at
amqp.brandcorp.example, runs a program that
also wishes to subscribe to and publish to the
exchange-points bids and mailboxwithin market;

• the exchange-point bids is a topic exchange;

• the exchange-point mailbox is a direct exchange;10

• we assume that all machines have prearranged di-
rect TCP-level connectivity available.

The pseudocode snippets given below are non-
normative: they are simply illustrative examples of pos-
sible commands that could be issued in a scenario such
as the one we are examining in this section.

9And a duplicate reply, if a reply is available at the time.
10One interesting benefit of direct exchanges is that it is not possible

to make a wildcard binding to the exchange: if two parties are com-
municating via a direct exchange with a secret routing key, then all
other things being secured there is no means by which an eavesdrop-
per can overhear their conversation other than guessing the routing
key being used. (Interestingly, it doesn’t look like this kind of ’secu-
rity’ is possible in AMQP 1.0.)

The exchange space is created

Margaret issues the following command to her server at
amqp.market.example:

Exchange .Declare(exchange = ’market ’,

arguments =

{’implementation ’:

’prototype ’},

type = ’x-exchangespace ’)

This command could fail for all the usual AMQP rea-
sons: duplicate name with differing type, permission
denied, unsupported exchange type, and so on.

Alice tries to join the space, but fails

Alice issues the following command to her server at
amqp.acme.example:

Exchange .Declare(exchange = ’marketbids ’,

type = ’x-exchangepoint ’,

arguments =

{’exchangespace ’:

{’implementation ’: ’prototype ’,

’host ’: ’amqp .market.example ’,

’space ’: ’market ’,

’username ’: ’alice ’,

’password ’: ’41iC3 ’},

’exchangename ’: ’bids ’,

’exchangetype ’: ’topic ’})

Alice’s server instantiates an exchange-space relay,
behind the scenes, and causes it to try to contact the
exchange-space denoted by the exchangespace argu-
ment to the exchange declaration. This contact fails,
ultimately causing the command that Alice issued to
fail, because Margaret’s server has not been configured
to permit a user named alice to log in and access
the exchange-space embodied by the exchange called
market.

The command could also have failed for all the other
usual AMQP exchange-declaration-failure reasons, in-
cluding in particular either a local exchange already
existing with different exchange-type,11 or the remote
exchange-point already existing with different exchange-
type.12

11That is, a local exchange called marketbids with exchange-type
something other than x-exchangepoint.

12That is, a remote exchange-point called bids within the market

space with exchange-type something other than topic.

5

Margaret configures permissions for Alice
and Bob

Alice calls Margaret, who creates a RabbitMQ user13 on
amqp.market.example called alice, sets the password
appropriately, and permits that user to write to and read
from the exchange called market. Thinking ahead, Mar-
garet does the same for bob, to prevent trouble later.

Alice joins the space

Alice reissues her Exchange.Declare on
amqp.acme.example. This time, the behind-the-scenes
relay successfully contacts amqp.market.example, joins
the exchange space, and sets up the internal plumbing
required to make the exchange called marketbids on
amqp.acme.example an alias for the exchange-point
bids in the exchange-space market. Alice issues a
similar command, setting up a local alias marketmail

for exchange-point mailbox in exchange-space market:

Exchange .Declare(exchange = ’marketmail ’,

type = ’x-exchangepoint ’,

arguments =

{’exchangespace ’:

{’implementation ’: ’prototype ’,

’host ’: ’amqp .market.example ’,

’space ’: ’market ’,

’username ’: ’alice ’,

’password ’: ’41iC3 ’},

’exchangename ’: ’mailbox ’,

’exchangetype ’: ’direct ’})

Alice creates queues and binds them to marketbids

and marketmail as usual.

Bob joins the space

Bob issues commands to amqp.brandcorp.example,
very similar to those Alice issued, with differences
that let the exchange-point aliases being constructed fit
smoothly in with Bob’s existing application architec-
ture.

Exchange .Declare(exchange = ’b’,

type = ’x-exchangepoint ’,

arguments =

{’exchangespace ’:

{’implementation ’: ’prototype ’,

’host ’: ’amqp .market.example ’,

’space ’: ’market ’,

’username ’: ’bob ’,

’password ’: ’808’},

’exchangename ’: ’bids ’,

’exchangetype ’: ’topic ’})

13In this prototype, anyway. AMQPhas no general notion of “user”,
instead delegating such issues to SASL, so here I’m referring instead
to the authentication system currently implemented in RabbitMQ.

Exchange .Declare(exchange = ’m’,

type = ’x-exchangepoint ’,

arguments =

{’exchangespace ’:

{’implementation ’: ’prototype ’,

’host ’: ’amqp .market.example ’,

’space ’: ’market ’,

’username ’: ’bob ’,

’password ’: ’808’},

’exchangename ’: ’mailbox ’,

’exchangetype ’: ’direct ’})

The network management function helps co-
ordinate Alice’s and Bob’s local exchange-
point aliases

The behind-the-scenes relays in each of Alice’s and
Bob’s local AMQP servers have been coordinat-
ing with each other as a result of Alice’s and
Bob’s exchange-space-manipulating commands (the
Exchange.Declares and the Queue.Binds).

Alice and Bob communicate

Alice and Bob Basic.Publish messages to
marketbids/marketmail and b/m, their respective
local aliases for the exchange-points bids and mailbox

in the market exchange-space. The behind-the-scenes
relays arrange for messages to be delivered to appro-
priately bound queues.

6

